期刊专题

10.16450/j.cnki.issn.1004‑6801.2023.01.026

基于神经网络的压电能量收集器性能预估模型

引用
设计了一款双稳态聚偏氟乙烯(polyvinylidene fluoride,简称PVDF)梁压电振动能量收集器,并介绍了该款收集器结构特点和工作原理.为了解决传统理论模型预测与能量收集器实际输出性能的偏差,利用人工神经网络对其结构参数、激励频率和收集电能之间的非线性关系进行建模.基于误差反向传播训练的多层前馈网络建立了双稳态PVDF梁压电能量收集器的人工神经网络模型.以质量块质量、PVDF压电梁的压缩距离以及外激振力频率作为输入变量,收集器输出电压均方根(root mean square,简称RMS)值作为输出变量,采集了不同条件下压电能量收集器的实验数据.通过将仿真预测结果与实验结果对比,验证了所设计的人工神经网络能有效地预测压电能量收集器的输出特性,且无需复杂的收集器理论建模.

能量收集器、压电、人工神经网络、振动、性能预估

43

TN384;TM619(半导体技术)

国家自然科学基金;上海市自然科学基金资助项目;上海市自然科学基金资助项目

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

172-178

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

43

2023,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn