期刊专题

10.16450/j.cnki.issn.1004‑6801.2023.01.012

基于FISSA?DBN模型的风电机组运行状态监测

引用
为提高风电机组运行效率,降低风电场运营成本,对风电机组运行状态监测显得尤为重要,提出一种基于数据采集与监控(supervisory control and data acquisition,简称SCADA)系统和萤火虫改进麻雀搜索算法优化深度置信网络(firefly improved sparrow search algorithm optimized deep belief network,简称FISSA?DBN)的风电机组状态监测新方法.首先,对SCADA数据进行预处理分析,并利用专家系统和皮尔逊相关系数分析,相关分析选取输入参数和输出参数;其次,利用预处理数据集建立基于FISSA?DBN的风电机组运行状态监测新模型,根据模型预测值和实际输出值之间的重构值误差,以及指数加权移动平均阈值(exponentially weighted moving average,简称EWMA)判断是否有异常;最后,以华东某风电场实际数据为例进行实例验证.结果表明,所提出方法的预警时间比实际记录时间最早可提前4 d多.同时,将所提出方法与其他方法进行对比,结果表明该方法预警时间提前,模型预测误差更小.

风电机组、深度置信网络、状态监测、麻雀搜索算法、指数加权移动平均阈值

43

TM315;TK83(电机)

国家自然科学基金;国家自然科学基金;湖南省自然科学基金资助项目

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

80-87

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

43

2023,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn