期刊专题

10.16450/j.cnki.issn.1004-6801.2022.02.002

基于改进DBNs的三维叶尖间隙叶片裂纹诊断方法

引用
针对航空发动机结构复杂、干扰因素多、叶片裂纹特征提取困难及难以精确诊断等问题,提出一种基于改进深度信念网络(deep belief networks,简称DBNs)的三维叶尖间隙叶片裂纹特征提取与诊断方法.首先,根据DBNs重构误差的传递规律,通过全局反向重构(global back-reconstruction,简称GBR)机制构建一种能自适应调节深度的DBNs,以避免深层特征退化导致的特征表征能力不足的问题;其次,利用改进DBNs从叶片三维叶尖间隙中自适应学习深层裂纹特征;最后,采用Softmax回归模型建立深层特征与叶片裂纹间的复杂映射,实现叶片裂纹精确诊断.叶片裂纹诊断试验结果表明:所提方法能有效提取叶片裂纹特征,平均诊断精度达到98.43%,标准差仅为0.092%,具有较好的稳定性和泛化能力,能有效实现叶片裂纹诊断.

航空发动机叶片、三维叶尖间隙、深度信念网络、特征提取、故障诊断

42

U226.8+1;V232.4;TH17(电气化铁路)

国家自然科学基金;国家自然科学基金

2022-05-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

213-219

相关文献
评论
暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

42

2022,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn