期刊专题

10.16450/j.cnki.issn.1004-6801.2020.04.019

基于AEKF的车辆质量与道路坡度实时估计

引用
针对车辆在实际行驶过程中外界噪声的统计特性无法已知的问题,以车辆纵向动力学模型为基础,提出了自适应扩展卡尔曼滤波(adaptive extended Kalman filter,简称AEKF)的车辆质量及道路坡度估计算法.以动态估计车辆系统中的质量与坡度为研究对象,引入了旋转质量换算系数,建立车辆纵向动力学系统的状态空间模型,考虑了不同时刻的档位匹配与行驶特殊工况的处理.对系统状态方程进行离散化处理,得到系统状态方程与系统测量方程,在扩展卡尔曼滤波(extended Kalman filter,简称EKF)的基础上引入带遗忘因子的噪声统计估计器,通过AEKF对状态方程与测量方程实时更新,进行在线估计和校正噪声统计值,从而解决系统的噪声时变问题.本研究算法与EKF算法估计及实测结果的对比分析表明,本研究算法能够很好地对车辆质量和坡度信号进行有效滤波和估计,在短时间内逐渐收敛并逼近实测值,从而能够合理有效地检测车辆在行驶过程中的状态信息.

纵向动力学模型、自适应扩展卡尔曼滤波、汽车质量、道路坡度、遗忘因子

40

TB934(计量学)

国家自然科学基金资助项目;福建省自然科学基金资助项目;河南科技大学国家地方联合工程试验室开放基金资助项目

2020-09-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

758-764

暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

40

2020,40(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn