期刊专题

10.16450/j.cnki.issn.1004-6801.2017.05.024

EEMD和TFPF联合降噪法在齿轮故障诊断中的应用

引用
为了消除噪声对齿轮传动系统故障特征提取的影响,提出了一种基于集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)和时频峰值滤波(time-frequency peak filtering,简称TFPF)相结合的降噪方法.针对TFPF算法在窗长的选择方面受到限制的问题,采用了EEMD方法对其进行改进,使得信号在噪声压制和有效信号保真两方面得到权衡;含噪声的信号经过EEMD分解后,得到一系列频率成分从高到低的本征模态函数(intrinsic mode functions,简称IMFs),计算出各IMFs间的相关系数,判断需要滤波的IMFs.对不同的IMFs选择不同的窗长进行TFPF滤波,把过滤后的IMFs和剩余的IMFs重构得到最终的降噪信号.用模拟仿真信号和齿轮齿根故障信号对该方法进行验证,可见EEMD+TFPF能有效地去除噪声,成功提取齿根裂纹故障特征.

时频峰值滤波、集成经验模态分解、齿根裂纹、降噪

37

TH17;TH13

国家自然科学基金资助项目50775157;山西省基础研究资助项目2012011012-1

2018-01-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

1011-1017

暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

37

2017,37(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn