期刊专题

10.3969/j.issn.1004-6801.2013.01.029

基于粒子群优化决策树的齿轮箱故障诊断

引用
针对现有支持向量机(support vector machines,简称SVM)在构造多类分类器的过程中存在计算费时、搜索率不高的问题,提出了一种新的SVM决策树设计算法.引入具有优良的全局搜索性能的粒子群算法,将其应用于优化决策树,构造出一种自适应性强、识别率高的多元分类器,实现SVM的有效多值分类.将其结果应用于齿轮箱故障诊断中,试验结果证明改进后的SVM构造方法的有效性和准确性.

粒子群、决策树、支持向量机、故障诊断

33

TH165.3

山西省自然科学基金资助项目2011011026-3

2013-04-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

153-156

暂无封面信息
查看本期封面目录

振动、测试与诊断

1004-6801

32-1361/V

33

2013,33(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn