期刊专题

10.11684/j.issn.1000-310X.2023.01.004

基于Transformer编码器的合成语声检测系统

引用
自动说话人认证系统是一种常用的目标说话人身份认证方案,但它在合成语声的攻击下表现出脆弱性,合成语声检测系统试图解决这一问题.该文提出了一种基于Transformer编码器的合成语声检测方法,利用自注意力机制学习输入特征内部的长期依赖关系.合成语声检测问题并不关注句子的抽象语义特征,用参数量较小的模型也能得到较好的检测性能.该文分别测试了4种常用合成语声检测特征在Transformer编码器上的表现,在国际标准的ASVspoof2019挑战赛的逻辑攻击数据集上,基于线性频率倒谱系数特征和Transformer编码器的系统等错误率与串联检测代价函数分别为3.13%和0.0708,且模型参数量仅为0.082 M,在较小参数量下得到了较好的检测性能.

自动说话人认证、合成语声检测、Transformer编码器

42

TP302.1(计算技术、计算机技术)

国家自然科学基金;中国科学院青年创新促进会项目;中国科学院声学研究所自主部署前沿探索类项目

2023-02-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

26-33

相关文献
评论
暂无封面信息
查看本期封面目录

应用声学

1000-310X

11-2121/O4

42

2023,42(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn