期刊专题

基于模糊聚类的铣削刀具磨损状态识别研究

引用
依据刀具磨损主轴振动加速度信号所建立的自回归模型,提取了12个反映刀具磨损状态的特征参数,提出用模糊聚类模式识别铣削刀具磨损状态.试验结果表明:建立的刀具振动加速度时间序列信号自回归模型所提取的模型参数估计特征量,含有丰富的刀具磨损运行状态信息.在此基础上,利用模糊聚类分析相似尺度来衡量事物之间的亲疏程度,并以此来实现分类.研究结果表明:基于时间序列分析与模糊聚类分析相结合的刀具磨损状态识别方法,能有效识别铣削刀具磨损运行状态,选取置信水平λ=(0.65~0.79)时所得到的刀具磨损运行状态的识别结果更为准确;采用不同的相似系数计算方法所求得的模糊相似矩阵、自回归系数的阶数、置信水平λ的取值范围不同,识别正确率有所不同.

模糊聚类、磨损、识别

26

TH165

甘肃省自然科学基金3ZS051-A25-047

2009-07-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

218-223

相关文献
评论
暂无封面信息
查看本期封面目录

应用力学学报

1000-4939

61-1112/O3

26

2009,26(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn