期刊专题

10.3969/j.issn.1002-2082.2006.01.007

BP神经网络在光学相关器相关峰识别中的应用

引用
光学相关识别是图像识别的重要方法,有效识别相关器输出平面的相关峰信号是保证光学相关器图像识别准确性的关键.由于激光器输出功率的波动、光学系统本身的误差以及SLM器件本身带来的噪声,采用一般的阈值方法很难达到理想的效果.该文提出对相关器的输出平面进行预处理,充分考虑相关信号的形状信息,提取感兴趣区域(ROI),采用BP神经网络对输入矢量进行计算,可达到对相关峰信号和噪声的有效分类识别,从而提高了光学相关器识别的可靠性,降低了误判的概率.

光学相关器、神经网络、感兴趣区域、相关峰识别

27

TP183;TP391.41(自动化基础理论)

总装备部科研项目424114E

2006-03-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

15-18

暂无封面信息
查看本期封面目录

应用光学

1002-2082

61-1171/O4

27

2006,27(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn