期刊专题

10.3969/j.issn.1008-8008.2023.03.005

Bert-DTA:基于混合编码策略的药物靶标亲和力预测

引用
药物靶标亲和力预测是一种筛选药物的新型方法,可以直观地根据蛋白质序列特点筛选候选药物,该方法不仅可以为临床提供指导,而且可以有效节省资源和时间.现代研究利用不同的编码方式对蛋白质或药物序列进行编码,进而提出不同深度学习模型.然而,在生物学上,蛋白质和药物的结合是通过序列中的模体和药物的子序列结合来实现的.为了更精确地模拟这一过程,论文提出了一种可以统一子序列的编码模型——Bert-DTA,旨在提取蛋白质和药物的二级结构特征,使特征更具有生物可解释性,并以此为基础挖掘蛋白质与药物之间的相互作用机理.Bert-DTA以双向Transformer作为骨架,并对蛋白质和药物使用联合编码,挖掘DTA在二级结构层面的相互作用信息.经实验验证,Bert-DTA在药物靶标亲和力预测方面有不错的效果.

药物靶标亲和力、蛋白质编码、Bert、预训练、深度学习

41

TP391(计算技术、计算机技术)

2023-08-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

17-23

暂无封面信息
查看本期封面目录

运城学院学报

1008-8008

14-1316/G4

41

2023,41(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn