期刊专题

10.3969/j.issn.1671-4172.2019.04.003

基于EEMD方法的地下矿山微震信号去噪研究

引用
对地下矿山实时在线监测的微震信号进行微震事件特征提取和识别分类研究时,识别的效率往往取决于训练样本和测试样本的质量,为提高数据样本的质量,去除信号中掺杂的噪声,采用聚合经验模态分解(EEMD)方法对地下矿山微震信号进行预处理.通过采用EEMD分析方法对矿山微震信号进行预处理,获得从高频到低频铺展的一组固有模式分量(IMF)及一个残余分量,通过计算各分量能量占比把IMF中的噪声部分及残余项去除,再将包含矿山微震信号主要信息的剩余分量进行重构,从而得到去噪后的微震信号.通过信号仿真实验及实例分析,对比小波预处理方法,结果表明:该方法利用EEMD自适应分解的特性不但克服了小波阈值和分解函数选取困难等弊端,而且能显著提高信号的信噪比,较好地保留了信号形态,获得较为理想的去噪效果.

微震、去噪、聚合经验模态分解、小波、信噪比

71

TD803;TN911.4(矿山开采)

2019-08-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

12-18

相关文献
评论
暂无封面信息
查看本期封面目录

有色金属(矿山部分)

1671-4172

11-1839/TF

71

2019,71(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn