期刊专题

10.19650/j.cnki.cjsi.J2210193

基于深度学习的导波特征提取及其激光超声检测

引用
针对激光超声检测中波场的三维数据处理计算量大且损伤特征提取难的问题,提出了一种基于深度学习模型的导波波场分析方法.首先,以VGG-Net网络为框架,建立了基于VGG11(A-LRN)的残差网络模型,用于挖掘时间-空间波场数据中的导波特征;其次,以局部波数特征为物理机理,采用导波传播的解析式生成训练样本,解决了深度学习大数据获取的问题,获得了波场特征提取的神经网络模型;最后,以激光超声系统在含损伤结构中的实验数据作为测试样本,验证了所提出的网络模型能够提取表征损伤的导波特征,实现了结构的损伤成像,其损伤成像精度均在67%以上,损伤形貌的可视化效果好.

激光超声、导波、卷积神经网络、深度学习

43

TH878

国家自然科学基金;国家自然科学基金;国家自然科学基金;江苏省自然科学基金;基础加强计划技术领域基金项目

2023-04-14(万方平台首次上网日期,不代表论文的发表时间)

共10页

242-251

相关文献
评论
暂无封面信息
查看本期封面目录

仪器仪表学报

0254-3087

11-2179/TH

43

2022,43(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn