期刊专题

10.19650/j.cnki.cjsi.J2210032

基于改进小脑模型的sEMG下肢关节力矩预测

引用
关节力矩预测在康复医学、临床医学和运动训练等领域有着重要作用,对力矩连续、实时地预测可以使人机交互设备更好地反馈、复刻人体运动意图.为了给患者提供一个安全、主动、舒适的康复训练环境,提升人机交互设备的柔顺性,提出了一种改进型递归小脑模型神经网络模型关节力矩预测方法.该方法采用肌肉协同分析对采集的相关肌肉的表面肌电信号(sEMG)进行降维,将降维后的sEMG特征向量与关节角速度、关节角度作为输入信号,并在小脑模型神经网络中加入递归单元和模糊逻辑规则,以小波函数作为隶属度函数,对非疲劳、过渡疲劳及疲劳这3种状态下的踝关节背屈跖屈运动的动态力矩进行连续预测.力矩预测值与实际值之间的平均皮尔逊相关系数和平均标准均方根误差分别为0.933 5和0.159 8,实验结果验证了该方法对下肢关节力矩连续预测的准确性和有效性.

关节力矩预测、表面肌电信号、小脑模型神经网络、肌肉协同分析

43

TH772(仪器、仪表)

福建省对外合作项目2019I1009

2023-04-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

172-180

暂无封面信息
查看本期封面目录

仪器仪表学报

0254-3087

11-2179/TH

43

2022,43(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn