期刊专题

10.19650/j.cnki.cjsi.J1905283

基于DBN特征提取的模拟电路早期故障诊断方法

引用
针对当前模拟电路早期故障诊断中特征提取方法的不足,提出了应用深度置信网络(deep belief network,DBN)进行特征提取的方法.利用混沌粒子群优化算法,对DBN中受限玻尔兹曼机的学习率开展优化,进一步提升特征提取的性能.相比于其他常用的特征提取方法,提出的DBN特征提取方法可提取出早期故障深度和本质的特征,且具有相同的故障聚集程度高、不同故障的分离能力极为明显的特点.应用二级四运放双二阶低通滤波器仿真电路和Sallen-Key带通滤波器电路板进行早期故障诊断实验,得到的故障诊断正确率分别为98.13%和100%.

模拟电路、早期故障诊断、深度置信网络、特征提取、混沌粒子群优化

40

TH707(仪器、仪表)

国家自然科学基金;国家自然科学基金重点项目;国家重点研发计划“重大科学仪器设备开发”;装备预先研究重点项目

2020-04-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

112-119

相关文献
评论
暂无封面信息
查看本期封面目录

仪器仪表学报

0254-3087

11-2179/TH

40

2019,40(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn