单样本的低分辨率单目标人脸识别算法


针对只给定单幅目标图像的情况下,而要在监控视频中查找出该目标人脸图像的问题,提出了一种单样本的低分辨率单目标人脸识别算法.考虑到待识别样本集中的目标与非目标对象数量严重不均衡,以及单目标问题无法利用不同类别间的互斥关系.首先在待识别样本集中,通过聚类算法,将单目标的识别问题转化为多目标识别问题,进而提高开集人脸识别算法的鲁棒性;其次,利用迭代标签传播算法不断优化待识别样本的归属类别;在迭代过程中,按照置信概率估计每个类别的人脸确认阈值,以解决单样本无法训练分类器的问题.在多个人脸数据集上的实验结果表明,该算法对于单目标的单样本的人脸识别精确率既能逼近100%,也具有较高的召回率.
单目标、单样本、低分辨率、人脸识别
40
TP391.4;TH79(计算技术、计算机技术)
国家自然科学基金61771386,61801005,61673318
2019-06-05(万方平台首次上网日期,不代表论文的发表时间)
共7页
196-202