基于ITD模糊熵和GG聚类的滚动轴承故障诊断
提出了一种本征时间尺度分解模糊熵和GG模糊聚类的滚动轴承故障诊断方法。首先,将滚动轴承的振动信号进行ITD分解,得到若干个固有旋转分量和一个趋势项。然后,将PR分量分别与原始信号进行相关性分析,筛选出前3个含主要特征信息的PR分量,并将筛选的PR分量的模糊熵作为特征向量。最后,将特征向量输入到GG分类器中进行聚类识别。通过模糊熵、样本熵和近似熵对比,实验结果表明模糊熵能更好的表征故障信号的特征信息;通过GG聚类、GK 聚类和FCM聚类对比,实验结果表明GG聚类效果明显优于FCM、GK的聚类效果。因此,实验证明了基于ITD模糊熵和GG聚类的滚动轴承故障诊断方法的有效性和优越性。
本征时间尺度分解、模糊熵、GG模糊聚类、故障诊断
TH17
国家自然科学基金61077071;河北省自然科学基金F2011203207
2014-12-24(万方平台首次上网日期,不代表论文的发表时间)
共9页
2624-2632