期刊专题

10.3321/j.issn:0254-3087.2009.05.006

基于RS重构技术的LS_SVM预测模型及工业应用

引用
为实现不完备多变量时间序列的有效重构,将经典重构技术和粗糙集约简理论相结合,提出了一种广义输入状态重构方法和LS_SVM预测模型.首先,结合Mean Completer补齐算法和经典相空间重构方法,对不完备多变量时间序列进行补齐和含有一定嵌入裕量的初始重构,以克服序列中可能存在的数据缺失和嵌入不足等问题;然后,通过构建时间序列决策表,采用一种IGA算法对冗余嵌入和冗余变量进行RS约简,获取精简重构样本空间;最后,将精简结果作为LS_SVM的输入,辨识关键变量预测模型.将提出的方法应用氧化铝配料过程的原料组份时间序列的重构和预测,通过比较和分析验证了算法的有效性和优越性.

多变量时间序列、相空间重构、RS、LS_SVM、预测

30

TP273(自动化技术及设备)

国家自然科学基金60634020,60874037;教育部博士点基金200805331103

2009-06-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

921-925

暂无封面信息
查看本期封面目录

仪器仪表学报

0254-3087

11-2179/TH

30

2009,30(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn