期刊专题

10.3969/j.issn.1006-6896.2021.10.018

基于CEEMD-FCM的天然气储运压缩机气阀故障识别技术

引用
为实现天然气储运过程中往复式压缩机气阀故障的快速识别与诊断,采用互补集合经验模态分解(CEEMD)算法对信号进行模态分解,并借助相关系数和能量熵值原理提取信号特征参数;利用人工蜂群(ABC)算法寻找样本初始聚类中心,对模糊C均值聚类(FCM)算法进行优化,完成气阀状态的识别.结果表明:采用CEEMD算法对气阀状态信号进行特征提取,可有效解决经验模态分解(EMD)模态混叠和集合经验模式分解(EEMD)重构误差的问题;与其余组合模型相比,CEEMD-ABC-FCM模型的聚类效果最佳,总分类精度为95%,迭代步数和计算时间最短,可识别不同气阀状态的波形信号.研究结果可为压缩机故障诊断与识别提供理论指导.

压缩机气阀;故障识别;互补集合经验模态分解;模糊C均值聚类;人工峰群

40

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

97-101

相关文献
评论
暂无封面信息
查看本期封面目录

油气田地面工程

1006-6896

23-1395/TE

40

2021,40(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn