基于时间相关性注意力的行为识别
针对行为识别任务中,行为体和动作状态变化速度不同以及缺少对动作间的相关性研究而引起的行为判别能力低和误判等问题,提出一种基于SlowFast架构的时间相关性注意力机制模型.首先,放弃光流而直接将视频数据作为网络输入,使模型可以进行端到端训练;其次,定义了一种由相关性注意力和时间注意力构成的时间相关性注意力机制,其中相关性注意力机制用于提取动作间的相关性信息;然后,将信息输入时间注意力机制来抑制无用特征;最后,针对SlowFast在路径融合过程中由于卷积核步长过大而导致的特征间相关性丢失问题,提出更有效的连续卷积操作进行替代.在UCF101和HMDB51两个数据集上进行实验,结果证明,所提方法与现有方法相比,精度和鲁棒性具有优势.
行为识别、SlowFast、时间相关性注意力机制、端到端训练、路径融合
38
TP391.4(计算技术、计算机技术)
2023-08-18(万方平台首次上网日期,不代表论文的发表时间)
共12页
1095-1106