期刊专题

10.3788/YJYXS20112604.0544

结合SURF与聚类分析方法实现运动目标的快速跟踪

引用
为了解决运动目标快速跟踪过程的实时性与稳定跟踪问题,提出了结合SURF(Speed Up Robust Features)与K-means聚类分析的运动目标快速跟踪算法(SURF-KMs),对图像的局部多尺度特征提取与描述进行了研究.首先,使用SURF算法在跟踪窗口内提取特征点,生成并匹配特征矢量.然后,利用K-means 算法估计目标特征点的质心位置,确定其聚集范围,实时更新窗口尺寸和位置.最后,建立目标模板更新策略,当目标发生形态变化而无遮挡时,更新目标模板.实验结果表明,当目标发生大角度旋转和快速缩放,同时发生颜色变化时,所提出的SURF-KMs算法仍能够实现稳定的跟踪,且满足运动目标实时跟踪的稳定可靠、精确度高、抗干扰能力强等指标要求.

SURF、聚类分析、运动目标、快速跟踪

26

TP311(计算技术、计算机技术)

2012-01-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

544-550

相关文献
评论
暂无封面信息
查看本期封面目录

液晶与显示

1007-2780

22-1259/O4

26

2011,26(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn