期刊专题

10.20091/j.cnki.1000-3177.2023.02.018

边缘增强的EDU-Net遥感影像建筑物提取

引用
针对高空间分辨率遥感影像背景信息复杂,现有语义分割模型提取建筑物轮廓易出现边缘缺失、边界划分不清晰等问题,提出一种边缘增强型EDU-Net深度学习网络.在EDU-Net结构设计中,通过构建边缘特征约束模块,结合Sobel边缘检测图细化建筑物边缘特征;同时,基于二次强化策略提升模型对建筑物边缘信息的表征学习能力.在WHU数据集上,EDU-Net语义分割指标MIoU和F1分别为91.99%和92.37%,相较DoubleU-Net提升0.99%和1.05%;在中国典型城市建筑物数据集上,MIoU达83.12%,同时边缘与边界分割效果更佳,证明了所提出模型具有较好的分割性能和普适性.

高空间分辨率、语义分割、DoubleU-Net、边缘特征、深度学习

38

TP79(遥感技术)

国家自然科学基金;云南省基础研究计划项目;云南省基础研究计划项目

2023-07-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

134-141

暂无封面信息
查看本期封面目录

遥感信息

1000-3177

11-5443/P

38

2023,38(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn