期刊专题

10.3969/j.issn.1000-3177.2022.02.019

面向对象卷积神经网络的耕作梯田提取

引用
针对目前高分辨率遥感影像耕作梯田提取方法普遍精度不高的问题,提出一种面向对象与卷积神经网络相结合的方法.以福建省南平市为例,构建面向对象卷积神经网络,利用高分辨率GF-2和ZY-3遥感数据进行耕作梯田精细提取,并对比分析深度学习与传统方法、不同分辨率数据源以及不同分类器对提取效果的影响.结果表明:该方法总体精度达到87.1%,Kappa系数为0.76,与采用低层次特征的随机森林分类对比,总体精度提高了10.2%;分别结合深层次特征与随机森林、XG Boost和Ada Boost分类器,总体精度差异小于2%;该方法基于GF-2影像的提取精度较ZY-3提高了4.6%.此方法可有效表征高分辨率影像梯田对象的深层图像特征,并顾及影像中梯田的边界信息,实现了梯田的精细提取.

高分辨率遥感、卷积神经网络、面向对象分析、梯田提取、迁移学习

37

S127(农业物理学)

国家自然科学基金;福建省高校产学研重点项目

2022-09-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

138-144

暂无封面信息
查看本期封面目录

遥感信息

1000-3177

11-5443/P

37

2022,37(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn