期刊专题

10.3969/j.issn.1000-3177.2021.05.008

一种深度学习土地利用图斑影像核查方法

引用
鉴于深度卷积神经网络(deep convolutional neural networks,DCNN)的矩形感受野与土地利用图斑不规则形状范围的套合程度是影响土地利用图斑识别精度的重要因素,文章提出一套基于高分辨率影像的DCNN土地利用类型核查方法.该方法采用图斑掩膜裁切高分辨率影像,滤除矩形感受野内不套合部分,降低背景噪声,提高信噪比,从而准确识别图斑影像语义,通过检查语义与土地利用类型的符合性实现图斑的土地利用类型核查.在广水市第三次国土调查土地利用类型核查工作中,该方法获得了召回率为93.54%、准确率为93.57%的结果,为国土调查核查工作自动化提供了技术支撑.

高分辨率影像;土地利用类型核查;深度卷积神经网络;多语义;低噪声

36

P237(摄影测量学与测绘遥感)

2021-12-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

56-63

暂无封面信息
查看本期封面目录

遥感信息

1000-3177

11-5443/P

36

2021,36(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn