期刊专题

10.3969/j.issn.1000-3177.2020.02.009

深度学习遥感影像近岸舰船识别方法

引用
针对复杂背景近岸舰船检测与细粒度识别难题,提出了一种基于深度学习的新型端到端目标识别框架,可有效检测与识别任意方向的舰船目标.针对舰船目标短边尺度较小问题,提出了角度致密化的预设框设置方法,提高了候选区域生成时的召回率;采用改进方位敏感型区域插值池化,减少了坐标量化误差,实现了舰船局部区域特征的精确建模;利用注意力机制下的全局与局部特征区域级融合方法,提升了区域特征的类别判别能力,解决了细粒度舰船识别难题;针对舰船样本稀缺性问题,使用迁移学习提升了模型性能.构建了一个含有25类近岸舰船目标的细粒度数据集,与传统学习模型相比召回率提高2%,平均识别精度提高3%,对复杂背景下目标识别具有重要实用价值.

近岸舰船检测、细粒度分类、深度学习、端到端学习

35

TP391(计算技术、计算机技术)

国家自然科学基金项目61273279

2020-06-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

51-58

暂无封面信息
查看本期封面目录

遥感信息

1000-3177

11-5443/P

35

2020,35(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn