10.3969/j.issn.1000-3177.2019.03.006
一种面向土地覆盖分类的卷积神经网络模型
针对卷积神经网络在土地覆盖分类中卷积层尺寸过大问题,研究了一种适用于土地覆盖分类像素级分类的土地覆盖分类模型.以陆地卫星中分辨率影像和快鸟高分辨率影像为实验数据,对比了不同样本尺寸大小和不同分辨率影像对模型分类结果的影响,并与传统的基于光谱特征以及光谱加纹理特征的方法进行对比分析.结果 表明,陆地卫星中分辨率影像最佳训练样本尺寸大小为5像素×5像素,过大的样本尺寸在分类结果上会产生较强的滤波效应,减少了分类结果的细节信息,而过小的样本尺寸由于包含信息太少,导致误分严重;陆地卫星中分辨率影像分类结果细碎图斑少,一致性好,可有效减少分类后处理环节;快乌高分辨率影像最佳训练样本尺寸大小为7像素×7像素,相比陆地卫星中分辨率影像滤波效应得到缓解,细节信息保存更好,精度提升更大,对训练样本尺寸选择更为鲁棒,在总体分类精度上优于基于光谱特征和光谱加纹理特征的分类方法,可以很好地应用于土地覆盖分类.
卷积神经网络、土地覆盖分类、特征层、光谱特征、纹理特征
34
P237(摄影测量学与测绘遥感)
国家自然科学基金2016YFB0501501
2019-08-05(万方平台首次上网日期,不代表论文的发表时间)
共9页
34-42