10.3969/j.issn.1000-3177.2013.05.015
利用辅助数据的荒漠区高分辨率遥感分类研究
使用美国NAIP高分辨率航空遥感影像,在多尺度、多变量影像分割的基础上,采用决策树方法建立干旱区半干旱区的荒漠分类规则,并结合水系、道路等辅助地理数据进行干旱区半干旱区面向对象遥感分类.选择位于美国亚利桑那州菲尼克斯大都市区的周边典型荒漠地区为实验区,利用河流、道路等辅助数据进行面向对象遥感分类效果要优于单纯依靠遥感影像的分类,能够有效地提取季节性河流和简易道路.研究对美国亚利桑那州菲尼克斯都市区周边的同一荒漠地区进行了实验,利用决策规则有效提取植被和荒地,以及提取简易道路和土壤,分类总精度从常规面向对象分类方法的82.85%提高到92.45%.研究结果表明:本文提出的分类方法对荒漠地区的泥土路和灌木及其整体分类精度有较大提高.利用辅助数据进行遥感分类可以改善特定研究区的高分辨率遥感影像分类精度.
面向对象、多尺度分割、高分辨率遥感影像、辅助地理数据、决策树
28
TP79(遥感技术)
高等学校学科创新引智计划B08048
2013-11-18(万方平台首次上网日期,不代表论文的发表时间)
共8页
77-84