宽度学习系统的SAR影像海面强降雨智能检测研究
海洋降雨对全球大气循环和局地气候均有重要影响,从遥感影像中监测降雨团对于海洋天气预报具有重要意义.合成孔径雷达以高空间分辨率进行大范围观测的能力使其成为10-30 km尺度大小的强降雨团的有效观测手段之一.针对Sentinel-1波模式获取的9种海面现象的SAR影像组成的数据集,本文使用融合特征的宽度学习系统BLS(Broad Learning System)进行了海面强降雨团的智能检测研究.结果表明强降雨团的检测精度为98.51%,召回率为95.24%,该结果与ResNet50预训练模型的结果相当,但是同等计算条件下后者的模型训练时间却是前者的20倍.此外,与传统深度学习网络相比,BLS的结构是灵活的,即可以通过增加节点或增加数据集来优化、更新模型.对于BLS的节点增量学习功能,本文实验证实其可以在无需重训练整个模型的前提下更新模型.针对训练数据集增广导致的模型更新任务,本文综合利用增量学习方案和重训练方案的优点提出了模型的混合更新方案,新方案既能保证模型的高精度又能显著降低模型更新所需时间.
人工智能检测、海面强降雨检测、宽度学习系统、合成孔径雷达、模型更新
27
P2(测绘学)
2023-09-07(万方平台首次上网日期,不代表论文的发表时间)
共10页
1605-1614