期刊专题

遥感影像样本数据集研究综述

引用
随着机器学习、深度学习等人工智能技术在遥感领域的不断应用与发展,基于海量样本的数据驱动模型已经成为遥感影像信息提取的一种新的研究范式,其对样本数据的规模、质量、多样性等提出了更高要求.最近,国内外众多学者和研究机构相继发布了一系列遥感影像样本数据集,为大数据时代下遥感影像的信息提取和智能解译等奠定了研究基础.然而目前尚缺乏对上述影像样本数据集的综合分析,针对这一问题,本文在文献检索与分析的基础上,归纳总结了 124个具有一定影响力且应用广泛的遥感影像样本数据集并对其元数据进行了分析,并提供了数据来源、应用领域与关键词的发展变化,分析了数据集在空间、时间、光谱分辨率上的差异,以应用领域为依据将其划分为场景识别、土地覆被/利用分类、专题要素提取、变化检测、目标检测、语义分割等8个类别并以部分数据为例进行了具体分析,总结了深度学习模型在数据集上的研究进展,并针对稀疏样本导致的模型过拟合问题,探讨了样本时空迁移、小样本和零样本学习、样本主动发现、样本生成等在遥感影像信息提取中的应用前景.本文首次对遥感影像样本数据集进行了综述研究,可为相关领域科研人员提供数据参考.

遥感影像、样本数据集、机器学习、深度学习

26

G64;TP391.41;TP79

国家重点研发计划;国家自然科学基金;资源与环境信息系统国家重点实验室开放基金

2022-06-21(万方平台首次上网日期,不代表论文的发表时间)

共17页

589-605

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

26

2022,26(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn