期刊专题

Landsat 8地表温度产品降尺度深度学习方法研究

引用
以光谱指数为趋势面因子的降尺度方法被广泛用于遥感地表温度尺度转换中,但面临构建的光谱指数难以凸显地表温度分布规律、浅层的统计模型难以精准刻画趋势面因子与地表温度之间的复杂关系的不足.为此,本文以Landsat 8 ARD地表温度产品为降尺度对象,以Landsat8OLI原始数据为潜在趋势面因子,构建地表温度降尺度残差网络(LSTDRN)的深度学习模型;探索适用于Landsat 8地表温度产品空间降尺度的趋势面波段或组合,并在不同季节、不同地表类型下与经典传统方法TsHARP进行定量比较.结果 表明:LSTDRN方法利用Landsat8OLI原始单波段作为趋势面因子就能有较好的降尺度效果,增加潜在趋势面因子的组合数量并不能提高降尺度效果.不同地表覆盖类型实验中,LSTDRN方法降尺度效果整体优于经典传统方法,且以近红外波段、红光波段和归一化植被指数为趋势面因子时,近红外波段降尺度效果定量评价表现最佳;不同地表覆盖类型的LSTDRN降尺度效果排序为:植被>建筑>水体,而经典传统方法则没有表现出明显的差异.不同季节实验中,LSTDRN方法在春夏冬3季的降尺度效果的定量评价表现明显好于经典传统方法,两类方法的秋季降尺度结果相当.因此,提出的LSTDRN对Landsat 8遥感地表温度产品具有较好的降尺度效果,整体优于经典传统方法且稳定性更强.

遥感;地表温度;降尺度;Landsat 8;深度学习;趋势面

25

国家自然科学基金;安徽省地理信息智能技术工程研究中心技术研发项目

2021-09-28(万方平台首次上网日期,不代表论文的发表时间)

共11页

1767-1777

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

25

2021,25(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn