点云深度学习基准数据集
为推进深度学习方法在点云配准、语义分割、实例分割等领域的发展,武汉大学联合国内外多家高等院校和研究机构发布了包含多类型场景的地面站点云配准基准数据集WHU-TLS和包含语义、实例的城市级车载点云基准数据集WHU-MLS.其中,WHU-TLS基准数据集涵盖了地铁站、高铁站、山地、公园、校园、住宅、河岸、文化遗产建筑、地下矿道、隧道等10种不同的环境,共包含115个测站、17.4亿个三维点以及点云之间的真实转换矩阵,为点云配准提供了迄今为止最大规模的基准数据集.WHU-MLS基准数据集涵盖了地面特征(机动车道、道路标线、井盖、非机动车道),动态目标(行人、车辆),植被(树木、树丛、低矮植被),杆状地物及其附属结构(电线杆、独立提示牌、路灯、信号灯、独立探头等),建筑和结构设施(房屋、道路隔离结构、围墙和栅栏)以及其他公共和便利设施(垃圾桶、邮筒、消防栓、街头座椅、电力线等)等6大类30余小类地物要素,共包含2亿多个点和超过5000个实例对象,为语义分割、实例分割点云深度学习网络的训练、测试和性能评估提供了当前最为丰富的基准数据集.
遥感、深度学习、配准、语义分割、实例分割、点云基准数据集
25
国家杰出青年科学基金;国家自然科学基金
2021-04-06(万方平台首次上网日期,不代表论文的发表时间)
共10页
231-240