期刊专题

Sentinel-2卫星落叶松林龄信息反演

引用
林龄结构信息能够有效反映区域森林群落不同生长阶段的固碳能力,对于评估森林生态系统的健康状况具有重要意义.本研究以中国温带典型优势树种落叶松林为研究对象,分别选择其芽萌动期、展叶期和落叶期时段的Sentinel-2影像,采用多元线性回归(MLR)、随机森林(RF)、支持向量机回归(SVR)、前馈反向传播神经网络(BP)以及多元自适应回归样条(MARS)等5种方法依次构建落叶松林龄反演模型.通过相关性分析首先确定最佳遥感反演物候期,并在此基础上根据相关性差异筛选出5个最优特征变量用于模型反演,分别为冠层含水量(CWC),归一化水体指数(NDWI),叶面积指数(LAI),光合有效辐射吸收率(FAPAR)和植被覆盖度(FVC).研究结果表明,展叶期为落叶松林最佳遥感反演物候期.除植被衰减指数(PSRI)以及落叶期的NDVI、RVI外,落叶松林龄与各指标之间均呈负相关关系,其中与冠层含水量(CWC)的相关性最高,pearson相关系数达到-0.74 (p<0.01).此外,不同模型反演结果表明,随机森林模型(RF)为最佳落叶松林龄估测模型,其平均决定系数R2和平均均方根误差RMSE分别为0.89和2.91 a;多元线性回归模型(MLR)的林龄估测结果最差,其平均决定系数R2和平均均方根误差RMSE仅为0.57和5.69 a,非线性模型能更好的解释林龄与建模变量之间的关系.

遥感、Sentinel-2、落叶松、林龄反演、生物物理参数、随机森林

24

国家重点研发计划;国家自然科学基金;国家科技重大专项;民用航天技术预先研究项目

2021-01-29(万方平台首次上网日期,不代表论文的发表时间)

共14页

1511-1524

暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

24

2020,24(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn