期刊专题

结合残差编解码网络和边缘增强的遥感图像去噪

引用
高分辨率遥感图像去噪对于提高后续图像分析、识别等问题的准确性具有重要意义.目前的去噪算法普遍存在去噪结果边缘信息模糊、易产生视觉伪影导致遥感信息丢失的缺点,针对以上问题本文提出了一个基于边缘增强的残差编解码去噪网络用于高分辨率遥感影像去噪.该方法首先将噪声图片通过低通滤波器分解成高频层和低频层,然后将含噪声信息的高频层输入到带残差模块的编解码网络中,通过采样运算在多尺度空间上学习残差映射生成残差图像,最后使用跳跃连接得到完整的去噪结果.其损失函数由逐像素和感知损失两部分组成,逐像素损失使用传统的均方根误差学习像素级信息,感知损失学习语义特征上的差异可以保留更多边缘信息,最终得到更清晰的结果,其中感知损失是由级联在后的语义分割网络提取的特征图定义的.本文对不同测试数据做去噪实验并与几个经典方法对比证明本文模型的去噪结果优于其他方法,不仅提高图像的峰值信噪比,得到最高的平均梯度值,还在视觉上取得了最清晰的结果.实验结果表明,本文提出的基于边缘增强的深层编解码卷积网络在去噪的同时可以改善边缘细节被模糊的问题,保留更多遥感地物信息,提高图像视觉效果.

遥感图像去噪、卷积神经网络、边缘增强、感知损失、高分二号

24

国家自然科学基金编号:61371156

2020-04-21(万方平台首次上网日期,不代表论文的发表时间)

共10页

27-36

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

24

2020,24(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn