增强型多时相云检测
针对云检测在高亮度地表以及雪覆盖区域存在过度检测的问题,设计了一种不依赖热红外波段的增强型多时相云检测EMTCD(Enhanced Multiple Temporal Cloud Detection)算法.首先,利用云的光谱特征建立单时相云检测规则,并基于云、雪的光谱差异构建了增强型云指数ECI(Enhanced Cloud Index),改进了云、雪的区分能力;其次,以同一区域无云影像为参考,基于ECI指数构建了多时相云检测算法,较好地克服了单时相云检测中高亮度地表、雪和云容易混淆的问题,提高了云检测的精度;最后,选择两个典型区域的Landsat-8 OLI影像,对比分析了不同算法的云检测结果.实验结果表明:ECI指数能够有效区分云、雪,EMTCD方法的平均检测精度达到93.2%,高于Fmask(Function of mask)(81.85%)、MTCD(Multi-Temporal Cloud Detection)(66.14%)和Landsat-8地表反射率产品LaSRC(Landsat-8 Surface Reflectance Code)的云检测结果(86.3%).因此,本文提出的EMTCD云检测算法能够有效地减少高亮度地表和雪的干扰,实现不依赖热红外波段的高精度云检测.
云检测、增强型云指数、多时相、Landsat-8、多光谱
23
自然资源部土地利用重点实验室开放基金KLLU201702;国家重点研发计划2016YFB0501505
2019-04-29(万方平台首次上网日期,不代表论文的发表时间)
共11页
280-290