期刊专题

知识引导的稀疏时间序列遥感数据拟合

余维泽吴炜沈瑛范菁
浙江工业大学;
引用
在多云多雨的地区,光学遥感存在着获取无云数据困难的难题,这会导致时间序列应用中可用数据匮乏.因此,本文面向稀疏时间序列遥感数据,根据噪声造成遥感影像上归一化差分植被指数(NDVI)被低估的事实,提出了一种知识引导的拟合方法.首先,在遥感影像预处理的基础上,利用先验知识和时序差分法对噪声进行识别和剔除;然后,采用高斯二阶模型对原始数据进行拟合;最后,根据拟合残差更新权重,进行迭代拟合,重复上述过程直至获得稳定的结果.本文以Landsat 8OLI作为数据源,对浙江省杭州地区的森林数据进行拟合,结果表明:在稀疏时间序列数据的情况下,本文方法与MODIS数据拟合结果的相关系数达到0.92,关键时点(如NDV…展开v

稀疏时间序列数据、迭代加权、数据拟合、Landsat 8、高斯模型

21

TP701(遥感技术)

National Natural Science Foundation of China No.61572437,41301473国家自然科学基金61572437,41301473

2017-10-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

749-756

暂无封面信息
查看本期封面目录

遥感学报

北大核心CSTPCDEI

1007-4619

11-3841/TP

21

2017,21(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn