期刊专题

以地块分类为核心的冬小麦种植面积遥感估算

引用
以提高冬小麦种植面积估算精度为目标,选取种植结构复杂的都市农业区,采用QuickBird影像数字化农田地块边界,以多时相TM影像为核心数据源,以地块为基本分类单元,进行不同特征向量组合、不同分类器的冬小麦地块分类方法研究,并对比分析了基于地块分类和基于像元分类的冬小麦种植面积估算精度.研究结果表明,基于地块分类的冬小麦种植面积估算方法的总量精度和位置精度均高于像元分类;植被指数和纹理信息的引入有助于进一步提高地块分类精度;支持向量机与最大似然均能得到高达97%的总量精度和90%的位置精度,支持向量机地块分类所需的训练样本量远低于最大似然,因此支持向量机更加适合于冬小麦地块分类;冬小麦错分与漏分情况大多发生在细碎地块,其面积总量较小,而大地块错分和漏分较少,因此相对于像元分类,地块分类能在整个区域能得到较高的冬小麦位置精度和总量精度.

地块分类、冬小麦、种植面积、支持向量机、最大似然

14

TP79(遥感技术)

国家高技术研究发展计划(863计划);北京市优秀人才计划

2010-09-07(万方平台首次上网日期,不代表论文的发表时间)

789-805

暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

14

2010,14(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn