基于MRF随机场和广义混合模型的遥感图像分级聚类
有限混合模型FM的分级聚类已广泛应用于不同领域,然而,它的计算复杂度与观测数据的平方成正比,因此,在海量数据方面的应用就受到了限制.另一方面,多光谱图像数据中同时包含有空间和光谱两类信息,但大多数基于像素的多光谱图像聚类方法,仅使用了其频谱信息而忽视了空间信息.本文提出了一种新的基于广义有限混合模型GFM的分级聚类方法,该算法把MRF随机场和GFM模型结合在一起,分类数可以通过PLIC准则自动确定.算法在执行过程中,采用K均值聚类方式获得过分类图像,分级聚类从过分类图像开始,代替原来从单点类开始的方式,这样可以方便获取GFM模型成分密度的初始参数.最后,采用由Gibbs采样器生成的仿真测试图对算法的精度进行了定量评价,通过与K均值聚类和FM聚类的比较说明了本文算法的优越性,同时用荷兰Flevoland农业地区的极化SAR图像验证了本文算法的有效性.
FM模型、广义Gaussian混合模型、Markov随机场、EM算法、AHC聚类
11
TP751.1(遥感技术)
国家重点基础研究发展计划973计划2003CB716101
2008-04-14(万方平台首次上网日期,不代表论文的发表时间)
共7页
838-844