高分辨率影像的植被分类方法对比研究
高分辨率影像的纹理信息可解决用光谱分类面临的"同物异谱"和"同谱异物"问题,更精确地分辨地物的细微变化,但将纹理作为主要信息进行植被分类的研究较少.本文以南京市钟山景区为例,利用IKONOS影像数据的纹理信息进行植被分类,并将结果与用光谱信息、植被指数信息的分类结果比较.共使用了4个灰度共生矩阵纹理量:CON(对比)、COR(相关)、HOM(同质)和 MCON(改进的对比)分析各类植被的纹理表征设阈值分割;用3个植被指数:NDVI(归一化指数)、MSAVI(改进的土壤调节指数)和 SAVI(土壤调节指数)(L取0.5和5)选择发现SAVI5最能区分.对纹理和指数信息均设各类型的阈值进行分割提取;基于光谱信息分别用最小距离监督分类和ISODATA非监督分类.研究中先进行数据恢复,再分别用三种信息将试验区植被分为6类:草地、竹林、常绿针叶林、常绿阔叶林、混交林和园地,最后将三种方法4个结果进行比较.精度评价的结论是:纹理信息分类的精度最高,植被指数次之,光谱信息中的非监督分类最低,纹理反映地物光谱及差异信息,可作为最佳方法用于植被分类.
IKONOS影像、植被分类、南京市
11
TP79(遥感技术)
2007-06-18(万方平台首次上网日期,不代表论文的发表时间)
共6页
235-240