高分辨率遥感植被分类研究
以南京市区的植被覆盖为研究对象,基于IKONOS遥感影像,采用决策树分类算法,根据各种植被光谱特征建立知识库,提出基于光谱信息的植被分类方法,继而结合高分辨率影像特有的纹理特征引进局部一致性指数对该方法进行改进,提出结合纹理信息的高分辨率遥感植被分类方法,分类总体精度从仅利用光谱信息的83.16%显著提高到91.89%,Kappa系数达到0.8886.采用Quickbird遥感影像对该方法进行验证,分类总体精度为91.94%,Kappa系数为0.8783,表明该植被分类方法能有效地对植被进行分类与识别,精度较高,且对于不同数据源的植被分类具有一定的普适性,为实现植被的自动化提取提供了理论依据和有效的方法途径.
高分辨率遥感、植被分类、知识库、决策树、纹理
11
TP79(遥感技术)
江苏省高技术研究发展计划项目BG2004321
2007-06-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
221-227