期刊专题

神经网络和分形纹理在夜间云雾分离中的应用

引用
云雾分离是浓雾遥感监测的难点,地物光谱信息和图像纹理信息的综合利用,分形理论和BP神经网络技术的应用,使夜间云雾分离结果更为可信,基于灰度连通域的图像纹理提取提高了云雾边界的识别能力,灰度加权拉伸后的分数维增强了云雾的可分性,与传统最大似然法比较,本文所用方法对晴空地表、雾区、云区的识别精度均有提升,特别是云区的识别精度提高了10%,三类地表的总体识别率提高了7%,达到93%以上,文章最后对类的归并作了讨论.

BP神经网络、分形理论、云雾分离、分类后处理

10

P407;TP751.1(一般理论与方法)

四川省计委资助项目

2006-09-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

497-501

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

10

2006,10(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn