期刊专题

基于分类规则挖掘的遥感影像分类研究

引用
分析了目前遥感影像的统计分类、神经网络分类及基于符号知识的逻辑推理分类方法的优缺点.以GIS为平台,构建了多源空间数据库,将数据挖掘的思想和方法引入遥感影像分类中,提出了面向分类规则挖掘的遥感影像分类框架.针对遥感光谱数据及其他空间数据的特点,定义了连续属性样本分类概念和分割点评价指标,提出了一种新的连续属性样本分类规则挖掘算法.选择一个试验区,采用该算法分别对遥感光谱数据、遥感光谱和DEM数据相结合的数据进行分类规则挖掘、遥感影像分类和分类精度比较.结果表明:(1)该算法具有较高的分类精度;(2)加入DEM等与分类相关的其他空间数据可以提高遥感影像的分类精度.通过挖掘分类规则进行遥感影像分类,扩展了基于知识的逻辑推理分类方法中知识获取渠道,提高了分类规则获取的智能化程度.新的连续属性样本分类规则挖掘算法,扩展了归纳学习算法对连续属性样本分类的适应性.

遥感影像分类、地理信息系统、多源空间数据库、数据挖掘、分类规则

10

TP393.3(计算技术、计算机技术)

国家高技术研究发展计划863计划2001AA130023;中国科学院资助项目40271089

2006-05-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

332-338

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

10

2006,10(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn