期刊专题

多光谱卫星云图的高维特征聚类与降水天气判别

引用
基于静止气象卫星(GMS-5)多光谱云图的天气采样数据,分别对各样本数据在红外、水汽及可见光通道的灰度、梯度和纹理高维特征空间的投影点进行聚类分析,以确定诸天气样本在特征空间中的类属区域,进而用其对云图进行天气区的判别分类.针对传统聚类方法存在的缺点,本文采用了模糊C均值聚类(FCM)、遗传算法(GA)和模糊减法聚类(FSC)相互交叉、优势互补的思想,既克服了GA/FCM算法局部/全局寻优的不足,又可客观确定出聚类中心数目.对高维特征空间中的重叠和交叉部分的样本点类属,通过计算其与空间中各聚类中心点的欧氏距离来予以甄别,最后得到高维特征空间中各天气的类属域,实况云图中诸像素点通过计算和判断其灰度-梯度特征量在高维空间中的投影点落区位置,即可确定其天气类属,进而实现对天气区的自动分类.试验结果表明,该方法具有良好的分类效果,判别结果与天气实况基本一致.

卫星云图、天气判别、遗传算法、模糊C均值聚类、减法聚类

10

P407;TP751.1(一般理论与方法)

国家卫星项目参作气字2002第35号;中国科学院资助项目40375019

2006-04-27(万方平台首次上网日期,不代表论文的发表时间)

共7页

184-190

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

10

2006,10(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn