期刊专题

基于SVM的多源信息复合的高空间分辨率遥感数据分类研究

引用
遥感图像尤其是高空间分辨率(1-4m)遥感图像在土地利用和土地覆盖变化方面有着广阔的应用前景,传统高空间分辨率遥感图像信息提取方法存在精度和分类效率低的不足.本文提出的基于SVM的分类方法,复合光谱、纹理和结构信息等多源数据信息,对IKONOS高空间分辨率图像进行分类,并与最大似然法和单源数据(光谱)SVM分类结果进行定性和定量比较分析.研究结果表明,多源数据复合的SVM高空间分辨率遥感图像分类方法,能够有效解决单源数据信息图像分类效果破碎的问题;总精度达到68.38%,Kappa达到0.5993;对高维输入向量具有高的推广能力;比单源信息的SVM和最大似然方法图像分类精度更高,适合高空间分辨率遥感图像分类.

高空间分辨率、SVM、最优超平面、纹理、结构

10

TP79(遥感技术)

国家科技攻关项目2003AA131080

2006-04-13(万方平台首次上网日期,不代表论文的发表时间)

共9页

49-57

相关文献
评论
暂无封面信息
查看本期封面目录

遥感学报

1007-4619

11-3841/TP

10

2006,10(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn