期刊专题

基于YOLOv5的烤烟烟叶散把程度检测算法研究

引用
为解决烤烟烟叶散把过程中因散把不均匀导致烟叶重叠等问题,提出了一种基于YOLOv5目标检测算法的烟叶散把程度检测方法.通过对原始图像进行预处理构建烟叶散把图像数据集,在原始YOLOv5模型主干网络加入Ghost模块生成冗余特征图,在瓶颈层加入ACIN模块加强网络特征融合,同时利用烟叶松散度来评价散把程度.分别利用改进前后YOLOv5模型进行测试,结果表明:与原始模型相比,改进后YOLOv5模型在未明显增加计算量的前提下,网络参数量减少12.8%,模型大小减小12.4%,平均精确率提升0.2百分点;改进后模型与YOLOv4、Efficientdet-d0、Faster R-CNN等目标检测模型相比,平均精确率、检测速度均为最优且参数量较少.该技术可为提高烤烟烟叶分选速度和精度提供支持.

烤烟、烟叶散把、目标检测、YOLOv5模型、Ghost模块、ACIN模块

55

TS431(烟草工业)

云南省应用基础研究计划重点项目;中国烟草总公司云南省公司科技计划项目

2022-07-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

98-105

相关文献
评论
暂无封面信息
查看本期封面目录

烟草科技

1002-0861

41-1137/TS

55

2022,55(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn