期刊专题

支持向量回归算法在NIR光谱法预测烟草淀粉中的应用

引用
为考察支持向量机回归(SVR)在烟草近红外光谱(NIRS)分析中应用的可行性,采用偏最小二乘回归(PLS)、多元线性回归(MLR)、误差反向传播人工神经网络(BP-ANN)和SVR对187份烟草样品的NIR漫反射光谱及其淀粉含量的化学测定数据进行处理,建立了烟草中淀粉含量NIRS定标模型,并采用留一法交叉验证(LOOCV)和独立样本集对模型进行了内部和外部验证.结果表明,SVR模型的预测能力比BP-ANN、PLS和MLR模型略好.因此,可将SVR引入到烟草淀粉含量的NIR分析中.

烟草、近红外光谱、支持向量回归、机器学习

TS411.1(烟草工业)

2009-12-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

41-44,49

暂无封面信息
查看本期封面目录

烟草科技

1002-0861

41-1137/TS

2009,(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn