期刊专题

10.3969/j.issn.1671-5365.2009.06.001

有限簇L-Lipschitzian映象的迭代程序

引用
设E是一实Banach空间,K是E的一非空闭凸子集.设f:K→K是一压缩映象,T1,T2,…,Tn:K→K是具序列{kn}(c)[1,+∞),lim n→∞ kn=1的有限簇一致L-Lipschitzian渐近伪压缩映象,且∩N/(i=1)F(Ti)≠φ.设序列{xn}定义为xn+1=(1-αn-βn)xn+αnf(xn)+βnTrn/nxn,其中{αn},{βn} (c)[O,1],rn=n mod N是值域为{ 1,2,…,N}的模函数.在一定条件证明了迭代序列{xn}强收敛于T1,T2,…,Tn的公共不动点.推广和改进了张石生等人的最新结果.

黏性逼近、一致L-Lipschitzian映象、渐近伪压缩映象、正规对偶映象、不动点

9

O177.91(数学分析)

四川省青年科技基金资助项目06ZQ026-013

2009-12-04(万方平台首次上网日期,不代表论文的发表时间)

共3页

1-3

相关文献
评论
暂无封面信息
查看本期封面目录

宜宾学院学报

1671-5365

51-1630/Z

9

2009,9(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn