期刊专题

10.3969/j.issn.0258-7076.2011.05.023

基于SVM和BP神经网络的部分稳定氧化锆稳定率预测方法

引用
由于部分稳定氧化锫具有优良的物理化学性能,在冶金及材料中有着重要的地位,稳定率是部分稳定氧化锫产品性能的一个重要指标.而部分稳定氧化锆的制备过程具有非线性、多变量、时变等特点,本文采用了支持向量机( SVM)及BP神经网络方法对部分稳定氧化锆的稳定率进行了预测.将热处理温度、保温时间、降温速率、淬火温度及升温速率5个指标(参数)作为模型输入量,部分稳定氧化锆的稳定率作为输出值,分别以48组实验数据作为学习样本,并建立模型,运用该模型预测了5组部分稳定氧化锫的稳定率.实验结果表明,2种模型均具有较好的预测能力,人工神经网络模型预测结果平均误差为1.48%,支持向量机模型预测结果平均误差为0.68%,并且支持向量机预测部分稳定氧化锆的稳定率精度更高,可在实际生产过程中推广应用.

部分稳定氧化锆、稳定性、预测、支持向量机、BP神经网络

35

TG146.4;TP18(金属学与热处理)

国家重点基础研究发展计划973计划项目2007CB613606

2012-01-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

759-763

相关文献
评论
暂无封面信息
查看本期封面目录

稀有金属

0258-7076

11-2111/TF

35

2011,35(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn