期刊专题

10.3969/j.issn.1003-9767.2024.06.008

一种GRU结合CNN的网络流量分类算法研究

引用
循环神经网络(Recurrent Neural Network,RNN)结合卷积神经网络(Convolutional Neural Network,CNN)的混合算法在流量分类问题上的表现往往优于单一深度学习算法.文章基于CICIDS2017的原始流量数据,先进行预处理,再利用CNN模型学习数据流的空间特征,将数据流中所有数据包的CNN输出作为门控循环单元(Gated Recurrent Unit,GRU)的输入,学习网络流的时间特征,最后通过Softmax分类器获得分类结果.经过测试,在此数据集下,提出的双网络结合算法可以在更少的步数内达到数据流量分类的高准确率.

流量分类、深度学习、门控循环单元(GRU)、卷积神经网络(CNN)

36

TP301.6(计算技术、计算机技术)

2024-06-11(万方平台首次上网日期,不代表论文的发表时间)

共4页

25-28

相关文献
评论
暂无封面信息
查看本期封面目录

信息与电脑

1003-9767

11-2697/TP

36

2024,36(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn