期刊专题

10.3969/j.issn.1003-9767.2023.02.056

基于机器视觉的零件加工瑕疵图像识别算法

引用
由于传统瑕疵图像识别算法存在识别时间长、准确率较低的问题,研究基于机器视觉的零件加工瑕疵图像识别算法.使用最小误差法分割图像阈值,获取并处理瑕疵零件图像;提取瑕疵图像的全局特征与局部特征,经多维向量特征值排序后得到零件加工瑕疵的最终特征;利用形态学细化法提取图像边缘轮廓,结合机器视觉细化边缘像素,实现瑕疵图像识别.测试结果表明:使用机器视觉识别零件加工瑕疵图像算法,当图像数量增加到1000张时,图像识别平均所用时间为78.3 s,平均准确率则为95.817%,可以提高零件加工瑕疵图像识别的准确率.

机器视觉、零件加工、瑕疵、图像、识别算法

35

TH161.1

2023-04-10(万方平台首次上网日期,不代表论文的发表时间)

共3页

188-190

暂无封面信息
查看本期封面目录

信息与电脑

1003-9767

11-2697/TP

35

2023,35(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn