期刊专题

大数据环境下基于决策树的恶意URL检测模型

引用
恶意网址URL检测一直是信息安全防御技术领域的研究热点之一.针对传统恶意URL检测技术无法自主探测未知URL,并且缺乏适应大数据时代发展的能力等问题,设计并实现了一种基于大数据技术,结合决策树算法与黑白名单技术的恶意URL检测模型.该模型基于Spark分布式计算框架,利用已知URL训练集提取特征、训练决策树分类模型,然后用已有分类模型对黑白名单无法检测出的URL进行分类预测,达到检测目的.实验证明,构建的检测模型具有很好的检测效果和稳定性.

恶意URL、机器学习、黑白名单技术、大数据技术、Spark

TP311.13(计算技术、计算机技术)

2018-04-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

6-9

相关文献
评论
暂无封面信息
查看本期封面目录

信息与电脑

1003-9767

11-2697/TP

2018,(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn