期刊专题

10.3969/j.issn.1671-1122.2022.12.002

基于生成对抗网络与自编码器的网络流量异常检测模型

引用
近年来,机器学习尤其是深度学习算法在网络流量入侵检测领域得到了广泛应用,数据集样本类别分布情况是影响机器学习算法性能的一个重要因素.针对网络攻击类别多样,现有网络流量数据集类别分布不均的问题,文章提出了一种基于生成对抗网络与自编码器的网络流量异常检测模型.首先,文章使用基于Wasserstein距离的条件生成对抗网络对原始网络流量数据中的少数类别进行重采样;然后,使用堆叠去噪自编码器对重采样后的数据进行重构,获取数据的潜在信息;最后,使用编码器网络结合Softmax网络识别异常网络流量数据.在NSL-KDD入侵检测数据集上进行实验,实验结果表明,文章提出的异常检测模型可以有效提高类别占比不均衡的数据集中数量占比较少的攻击类型的识别率.

深度学习、异常检测、生成对抗网络、去噪自编码器

TP309(计算技术、计算机技术)

国家自然科学基金;深圳市基础研究资助项目;陕西省重点研发计划

2023-03-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

7-15

暂无封面信息
查看本期封面目录

信息网络安全

1671-1122

31-1859/TN

2022,(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn